Ngoài khả năng tiết kiệm điện trực tiếp, công tắc không cần làm mát và vận hành nhanh chóng: Với tốc độ 1 nghìn tỷ hoạt động mỗi giây, nó nhanh hơn từ 100 đến 1.000 lần so với các bóng bán dẫn thương mại hàng đầu hiện nay. Nghiên cứu được công bố trên tạp chí Nature.
Phòng thí nghiệm quang tử lai tại Skoltech. Ảnh: Skoltech Tác giả nghiên cứu, Tiến sĩ Anton Zasedatelev nhận xét: “Điều khiến thiết bị mới tiết kiệm năng lượng đến vậy là nó chỉ mất một vài photon để chuyển đổi. "Trên thực tế, trong phòng thí nghiệm tại Skoltech, chúng tôi đã đạt được khả năng chuyển đổi chỉ với một photon ở nhiệt độ phòng.
Vì photon là hạt ánh sáng nhỏ nhất tồn tại trong tự nhiên, nên thực sự không có nhiều tiềm năng để cải thiện hơn nữa về mức tiêu thụ điện năng. Hầu hết các bóng bán dẫn điện hiện đại cần nhiều năng lượng hơn hàng chục lần để chuyển đổi, và những bóng bán dẫn sử dụng các electron đơn để đạt được hiệu suất tương đương thì chậm hơn.
Bên cạnh các vấn đề về hiệu suất, các bóng bán dẫn điện tử tiết kiệm điện cạnh tranh cũng có xu hướng yêu cầu bộ làm mát cồng kềnh, do đó tiêu thụ đáng kể điện năng và các yếu tố ảnh hưởng đến chi phí vận hành. Công tắc mới hoạt động thuận tiện ở nhiệt độ phòng và do đó tránh được tất cả những vấn đề này.
Cách thức hoạt động
Thiết bị dựa vào hai tia laser để đặt trạng thái của nó thành "0" hoặc "1" và chuyển đổi giữa chúng. Một chùm tia laser điều khiển rất yếu được sử dụng để bật hoặc tắt chùm tia laser khác sáng hơn. Nó chỉ mất một vài photon trong chùm điều khiển, do đó nâng hiệu suất của thiết bị.
Việc chuyển mạch xảy ra bên trong một vi trọng lực — một polyme bán dẫn hữu cơ mỏng 35 nanomet được kẹp giữa các cấu trúc vô cơ có tính phản xạ cao. Vi trọng lực được xây dựng theo cách để giữ cho nguồn ánh sáng tới bên trong càng lâu càng tốt để có lợi cho sự kết hợp của nó với vật liệu của khoang.
Sự kết hợp vật chất ánh sáng này tạo nên cơ sở của thiết bị mới. Khi các photon kết đôi mạnh mẽ với các cặp lỗ trống liên kết - hay còn gọi là exciton - trong vật liệu của khoang, điều này làm phát sinh các thực thể tồn tại ngắn hạn gọi là exciton-polaritons, là một loại lượng tử năng lượng nằm ở trung tâm hoạt động của công tắc.
Khi tia laser bơm — thứ sáng hơn trong hai tia — chiếu vào công tắc, điều này tạo ra hàng nghìn quasipar giống hệt nhau ở cùng một vị trí, hình thành cái gọi là điểm ngưng tụ Bose-Einstein, mã hóa trạng thái logic "0" và "1" của thiết bị.
Để chuyển đổi giữa hai cấp độ của thiết bị, nhóm nghiên cứu đã sử dụng xung laser điều khiển gieo vào chất ngưng tụ ngay trước khi xuất hiện xung laser bơm. Kết quả là, nó kích thích quá trình chuyển đổi năng lượng từ tia laser của máy bơm, thúc đẩy lượng chuẩn hạt ở điểm ngưng tụ. Lượng hạt cao trong đó tương ứng với trạng thái "1" của thiết bị.
Các nhà nghiên cứu đã sử dụng một số tinh chỉnh để đảm bảo tiêu thụ điện năng thấp: Thứ nhất, việc chuyển mạch hiệu quả được hỗ trợ bởi sự dao động của các phân tử polyme bán dẫn. Bí quyết là so sánh khoảng cách năng lượng giữa các trạng thái bơm và trạng thái ngưng tụ với năng lượng của một rung động phân tử cụ thể trong polyme. Thứ hai, nhóm nghiên cứu đã tìm ra bước sóng tối ưu để điều chỉnh tia laser của họ và thực hiện một sơ đồ đo mới cho phép phát hiện chất ngưng tụ trong một lần chụp. Thứ ba, tia laser điều khiển gieo hạt ngưng tụ và sơ đồ phát hiện của nó được khớp theo cách triệt tiêu tiếng ồn từ phát xạ "nền" của thiết bị. Các biện pháp này đã tối đa hóa mức tín hiệu trên nhiễu của thiết bị và ngăn không cho một lượng dư năng lượng bị hấp thụ bởi vi trọng lực, vốn chỉ làm nóng thiết bị thông qua các dao động phân tử.
Hình dung lớn hơn, các nhà nghiên cứu coi công tắc mới của họ chỉ là một trong bộ công cụ ngày càng tăng của các thành phần quang học mà họ đã lắp ráp trong vài năm qua. Chúng bao gồm một ống dẫn sóng silicon suy hao thấp để ngắt tín hiệu quang học qua lại giữa các bóng bán dẫn. Sự phát triển của các thành phần này đưa chúng ta đến gần hơn với máy tính quang học có thể điều khiển các photon thay vì các electron, dẫn đến hiệu suất vượt trội hơn rất nhiều và tiêu thụ điện năng thấp hơn.
Hà Trần (Theo Phys.org)